Laboratorium Podstaw Pomiarów

Podstawy Elektroniki i Pomiarów 2 – laboratorium

Ćwiczenie T8 Badanie czwórników

Instrukcja

Opracował: dr inż. Maciej Linczuk

(ise)

Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Warszawa 2024

v. 2_1 (29.05.2024)

Politechnika Warszawska

Unia Europejska Europejski Fundusz Społeczny

Ćwiczenie T8

Badanie czwórników

1. Cel ćwiczenia

Celem ćwiczenia jest zbadanie właściwości czwórnika – dzielnika napięciowego oraz nabycie praktycznej umiejętności posługiwania się sondą oscyloskopową.

2. Tematyka ćwiczenia

- wyznaczanie charakterystyki czwórnika,
- charakterystyka amplitudowa,
- charakterystyka fazowa,
- dzielnik napięciowy skompensowany,
- sonda oscyloskopowa.

3. Umiejętności zdobywane przez studentów

- wyznaczenie charakterystyki amplitudowej i fazowej czwórnika,
- posługiwanie się programem LTSPICE,
- posługiwanie się sondą oscyloskopową.

4. Podstawy teoretyczne

4.1. Charakterystyka amplitudowa i fazowa czwórnika. Wyznaczanie transmitancji.

Obwód złożony z elementów: **R1**, **R2**, **C1** i **C2** przedstawiony na Rys. 8.1 nazywamy dzielnikiem napięciowym.

Rys. 8.1. Schemat ideowy dzielnika napięciowego

Impedancja Z_{RC} dwójnika powstałego przez równoległe połączenie opornika o rezystancji R i kondensatora o pojemności C jest funkcję częstotliwości f i wyraża się zależnością

$$Z_{RC} = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega RC}$$
(8-1)

gdzie ω oznacza pulsację równą $2\pi f$.

W dzielniku napięciowym z Rys. 8.1 zależność pomiędzy napięciem wejściowym U_{we} a napięciem wyjściowym U_{wy} możemy wyznaczyć z następującego wzoru:

$$U_{wy} = U_{we} \cdot \frac{Z_{R_2C_2}}{Z_{R_2C_2} + Z_{R_1C_1}} = U_{we} \cdot \frac{\frac{R_2}{1 + j\omega R_2C_2}}{\frac{R_2}{1 + j\omega R_2C_2} + \frac{R_1}{1 + j\omega R_1C_1}}$$
(8-2)

Zdefiniujmy współczynnik $H(j\omega)$ jako stosunek napięcia wyjściowego U_{wy} do napięcia wejściowego U_{we} . Współczynnik ten określa zmiany amplitudy i fazy sygnału sinusoidalnego po przejściu przez czwórnik. Przekształcając wzór (8-2), współczynnik ten można wyrazić w postaci

$$H(j\omega) = \frac{U_{wy}}{U_{we}} = \frac{R_2(1+j\omega R_1 C_1)}{R_2(1+j\omega R_1 C_1) + R_1(1+j\omega R_2 C_2)}$$
(8-3)

Współczynnik $H(j\omega)$ będący funkcją pulsacji ω nazywamy **transmitancją czwórnika**. Na uwagę zasługuje fakt zastosowania notacji $H(j\omega)$ zamiast $H(\omega)$. Wynika to z faktu, że transmitancja dowolnego czwórnika składającego się z rezystancji, pojemności i indukcyjności zawsze będzie dawała się przedstawić jako funkcja zespolona o argumencie *j* ω .

Korzystając ze wzoru (8-3) można udowodnić, że:

• gdy
$$\omega \to 0$$
 to $H(j\omega) \to a = \frac{R_2}{R_1 + R_2}$

W stanie ustalonym w obwodzie prądu stałego kondensatory traktujemy jako rozwarcie (prąd nie płynie przez kondensator), a dzielnik sprowadza się do układu składającego się z samych rezystorów.

• gdy $\omega \to \infty$ to $H(j\omega) \to b = \frac{C_1}{C_1 + C_2}$

Gdy częstotliwość jest bardzo duża, to moduł impedancji kondensatorów $|Z_c| = \frac{1}{\omega c}$ jest wielokrotnie mniejszy od rezystancji rezystorów. Prąd płynący przez kondensatory jest wielokrotnie większy od prądu płynącego przez rezystory, więc wartości rezystancji mogą zostać pominięte – rezystory możemy zastąpić rozwarciem.

• gdy stałe czasowe zdefiniowane następująco:

$$\tau_1 = R_1 C_1 \quad \text{oraz} \quad \tau_2 = R_2 C_2$$

są sobie równe, to transmitancja $H(j\omega)$ nie zależy od częstotliwości. Spełnienie warunku $\tau_1 = \tau_2$ oznacza, że dzielnik napięciowy jest **skompensowany**.

Wykorzystując zdefiniowane stałe a, b, oraz stałe czasowe τ_1 , τ_2 , wzór (8-3) można przekształcić do następującej postaci:

$$H(j\omega) = \frac{U_{wy}}{U_{we}} = \frac{1+j\omega\tau_1}{\frac{1}{a}+j\omega\frac{\tau_1}{b}}$$
(8-4)

Transmitancja $H(j\omega)$ jest liczbą zespoloną opisującą zmiany amplitudy oraz fazy sygnału sinusoidalnego po przejściu przez czwórnik.

Moduł transmitancji $|H(j\omega)|$ opisuje zmiany amplitudy i dla dzielnika z Rys. 8.1 może być wyznaczony z równania (8-4):

$$|H(j\omega)| = \frac{|U_{wy}|}{|U_{we}|} = \frac{\sqrt{1 + \omega^2 \tau_1^2}}{\sqrt{\frac{1}{a^2} + \frac{\omega^2 \tau_1^2}{b^2}}}$$
(8-5)

Funkcję częstotliwości (8-5), opisującą zmiany amplitudy sygnału sinusoidalnego po przejściu przez czwórnik, nazywamy **charakterystyką amplitudową** czwórnika.

Argument liczby zespolonej $H(j\omega)$ opisuje zmiany fazy sygnału sinusoidalnego po przejściu przez czwórnik. Korzystając ze wzoru (8-4) dla dzielnika z Rys. 8.1 można go wyznaczyć w następujący sposób:

$$\arg(H(j\omega)) = \arg(U_{wy}) - \arg(U_{we}) = \operatorname{arc} \operatorname{tg}(\omega\tau_1) - \operatorname{arc} \operatorname{tg}\left(\frac{\omega\tau_1 a}{b}\right)$$
(8-6)

Funkcję częstotliwości (8-6), opisującą zmiany fazy sygnału sinusoidalnego po przejściu przez czwórnik, nazywamy **charakterystyką fazową** czwórnika.

4.2 Sonda oscyloskopowa

Sonda oscyloskopowa jest praktyczną realizacją dzielnika napięciowego. Schemat zastępczy toru wejściowego oscyloskopu z dołączoną sondą oscyloskopową przedstawiono na Rys. 8.2.

Elementy C_1 i R_1 znajdują się bezpośrednio w sondzie oscyloskopowej. W sondzie współpracującej z oscyloskopem **Rigol** wykorzystywanym w Laboratorium $R_1 = 9$ M Ω . Kondensator C_1 jest regulowany – jego pojemność można zmieniać za pomocą pokrętła umieszczonego w sondzie. Rezystancja R_{we} jest rezystancją wejściową oscyloskopu, a pojemność C_{we} jest jego pojemnością wejściową. Należy zauważyć, że pojemność C_{we}

jest połączona równolegle względem pojemności przewodu koncentrycznego C_p służącego do dołączenia sondy.

Rys. 8.2. Tor wejściowy oscyloskopu z dołączoną sondą oscyloskopową

Impedancję wejściową toru wejściowego oscyloskopu można przedstawić jako równoległe połączenie rezystancji R_{we} oraz sumy pojemności C_{we} i C_p . Według danych katalogowych producenta oscyloskopu **Rigol** wykorzystywanego w Laboratorium rezystancja wejściowa wynosi 1 M Ω , a pojemność wejściowa 17 pF. Pojemność przewodu koncentrycznego zależy od jego budowy i długości. Pojemność przewodów wykorzystywanych w Laboratorium jest rzędu kilku pF na metr długości. Impedancja wejściowa oscyloskopu jest równa

$$Z_{OSC} = \frac{R_{we}}{1 + j\omega R_{we} (C_{we} + C_p)}$$
(8-7)

Moduł impedancji |*Zosc*| maleje więc ze wzrostem częstotliwości. Powoduje to wzrost obciążenia badanego źródła i jest przyczyną powstawania błędu metody pomiarowej. Po zastosowaniu sondy oscyloskopowej impedancja wejściowa układu pomiarowego składającego się z sondy oscyloskopowej oraz oscyloskopu wynosi

$$Z_{SONDA} = \frac{R_1}{1 + j\omega R_1 C_1} + \frac{R_{we}}{1 + j\omega R_{we} (C_{we} + C_p)}$$
(8-8)

Prawidłowo zestrojona sonda oscyloskopowa jest dzielnikiem napięciowym skompensowanym, w którym

$$R_1 = 9 \cdot R_{we} \quad \text{oraz} \quad C_1 = \frac{C_{we} + C_p}{9} \tag{8-9}$$

Dla tak zestrojonej sondy oscyloskopowej zachodzi zależność

$$Z_{SONDA} = 10 \cdot Z_{OSC} \tag{8-10}$$

Impedancja wejściowa układu sondy z oscyloskopem jest dziesięciokrotnie większa, niż samego oscyloskopu. Zastosowanie sondy oscyloskopowej zmniejsza więc błąd metody pomiarowej związanej z obciążeniem układu przez oscyloskop. Niestety, czułość oscyloskopu z dołączoną sondą jest dziesięciokrotnie mniejsza niż samego oscyloskopu.

Rys. 8.3. Kompensacja sondy pomiarowej (od lewej: sonda przekompensowana, sonda skompensowana, sonda niedokompensowana)

We współczesnych pomiarach oscyloskopowych (szczególnie w układach wielkiej częstotliwości) często stosujemy sondy. Opisany dzielnik napięciowy skompensowany jest najprostszym rodzajem sondy oscyloskopowej. Bardziej zaawansowane sondy posiadają układy wzmacniające oraz dopasowujące parametry wejściowe oscyloskopu do badanego układu.

5. Moduł pomiarowy X01

W ćwiczeniu będzie wykorzystywany moduł **X01** ze specjalnie zaprojektowaną nakładką ułatwiającą montaż układów pomiarowych (Rys. 8.4).

Rys. 8.4. Płyta czołowa modułu pomiarowego X01

Gniazda: **OSC**, **V** i **OSC**/**V** służą do dołączenia multimetrów lub oscyloskopu, zależnie od rodzaju pomiarów. Jako opornik **R**₂ należy wykorzystać opornik wzorcowy posiadający cztery zaciski. Dodatkowe zaciski umożliwiają równoległe dołączenie kondensatora **C**_A lub **C**_B – zgodnie z tabelą wskazaną przez Prowadzącego. Do pomiaru napięcia na oporniku **R**₂ należy wykorzystać przewód BNC z wtykami bananowymi.

6. Przykładowy projekt dzielnika napięciowego z wykorzystaniem arkusza kalkulacyjnego

 R1 [kΩ]
 R2 [kΩ]
 C1 [μF]
 C2 [μF]

 0,10
 0,40
 0,47
 0,22

Dla zadanych wartości elementów dzielnika:

otrzymano następujące wartości parametrów:

а	b	τ1 [ms]	τ2 [ms]
0,80	0,68	0,047	0,088

Następnie korzystając ze wzorów (8-5) i (8-6) otrzymano następujące charakterystyki dzielnika:

Na stronie Laboratorium (zakładka **Ćwiczenie T8**, plik **Dzielnik.xlsx**) dostępny jest arkusz kalkulacyjny, który można wykorzystać przy projektowaniu dzielnika napięciowego.

Rys. 8.5. Arkusz kalkulacyjny Dzielnik.xlsx

7. Projektowanie dzielnika napięciowego przy użyciu programu LTspice

Program **LTspice** firmy Analog Devices można pobrać i zainstalować na swoim komputerze, korzystając z linku:

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

Następnie należy pobrać ze strony Laboratorium (zakładka **Ćwiczenie 8**, pliki: **Projekt_f.asc** i **Projekt_t.asc**) dwa projekty potrzebne do rozwiązania zadań domowych.

W celu przeprowadzenia analizy częstotliwościowej dzielnika należy kliknąć na ikonkę projektu **Projekt_f.asc**. Uruchomi się następujące okno:

Rys. 8.6. Projekt dzielnika napięciowego Projekt_f.asc w oprogramowaniu LTspice

Klikając prawym przyciskiem myszki na poszczególne elementy dzielnika, należy zmienić ich wartości na wartości zgodne z aktualnie realizowanym projektem. Jako separatora części dziesiętnej w programie **LTspice** należy używać kropki a nie przecinka.

W celu przeprowadzenia symulacji wybieramy z menu **Simulate** opcję **Run**. Program symuluje obwód i uruchamia okno, w którym możemy oglądać wyniki symulacji. W celu wyświetlenia interesującej nas charakterystyki klikamy myszką na wyjście dzielnika. W oknie zostają wyświetlone charakterystyki: amplitudowa i fazowa. W celu zmiany jednostki z decybeli (dB) na skalę liniową klikamy prawym przyciskiem myszki na skalę, wybieramy opcję **Linear** i zatwierdzamy **OK**. Wyniki symulacji obwodu z Rys. 8.6 przedstawiono na Rys. 8.7.

Rys 8.7. Przykładowe wyniki symulacji dzielnika napięciowego – charakterystyki częstotliwościowe (amplitudowa i fazowa)

W celu przeprowadzenia analizy czasowej dzielnika przy pobudzeniu sygnałem prostokątnym należy kliknąć na ikonkę projektu **Projekt_t.asc**. Uruchomi się następujące okno:

Rys. 8.8. Projekt dzielnika napięciowego Projekt_t.asc w oprogramowaniu LTspice

Wyniki symulacji obwodu z Rys. 8.8 przedstawiono na Rys. 8.9.

Rys 8.9. Przykładowe wyniki symulacji dzielnika napięciowego – analiza czasowa

8. Program demonstracyjny Demo_04

Program demonstracyjny **Demo_04** jest dostępny na pulpicie komputerów w Laboratorium oraz na stronie przedmiotu (zakładka **Ćwiczenie T8**, plik **Program demonstracyjny LPP_04.zip**). Program ten umożliwia analizę wpływu częstotliwości i wartości poszczególnych elementów dzielnika napięciowego na charakterystykę amplitudową i fazową oraz przebieg czasowy napięcia wyjściowego przy pobudzeniu sygnałem prostokątnym. Obok wykresów wyświetlane są wartości różnych parametrów dzielnika (m.in. opisanych w rozdziale 4.1 parametrów: *a*, *b*, τ_1 , τ_2). Zmieniając częstotliwość za pomocą suwaka można odczytać wartości modułu transmitancji |H| wyrażonego wzorem (8-5) w różnych punktach charakterystyki.

W programie uwzględniono dwa zestawy danych oznaczone jako **Dane 1** i **Dane 2**. Zestaw **Dane 2** obejmuje zakresy wartości poszczególnych elementów charakterystyczne dla sondy oscyloskopowej. Podczas zmiany zestawu danych wszystkie parametry są resetowane (przyjmują wartości domyślne).

Rys 8.10. Okno programu demonstracyjnego Demo_04

9. Badania i pomiary

Przed przystąpieniem do pracy należy ustawić parametr *Output Load* generatora:

\rightarrow Channel \rightarrow Output Load \rightarrow Set To High Z

oraz przywrócić ustawienia fabryczne oscyloskopu:

$$\rightarrow$$
 Default \rightarrow Ok

Zadanie 1. Wyznaczenie teoretycznej charakterystyki dzielnika napięciowego.

- **Zad. 1.1.** Zmierzyć multimetrem **34450A** wartości pojemności kondensatorów **C**_A i **C**_B. Kondensatory **C**_A i **C**_B wykorzystać jako C_1 i C_2 zgodnie z tabelą wskazaną przez Prowadzącego. W tej samej tabeli są podane wartości R_1 i R_2 .
- Zapisać w protokole wartości: C_1 , C_2 , R_1 , R_2 . Obliczyć i zapisać w protokole wartości parametrów: a, b, τ_1 , τ_2 (podać odpowiednie wzory i podstawienia wartości liczbowych). Obliczyć, przy jakiej wartości rezystancji R_1 dzielnik byłby skompensowany.

- Zad. 1.2. Korzystając z arkusza kalkulacyjnego Dzielnik.xlsx dostępnego na stronie Laboratorium (zakładka Ćwiczenie T8) wyznaczyć charakterystykę amplitudową i fazową dzielnika napięciowego dla wartości elementów z Zad. 1.1 i zakresu częstotliwości od 100 Hz do 50 kHz. Charakterystyki zamieścić w protokole.
- Zad. 1.3. Korzystając z arkusza kalkulacyjnego Dzielnik.xlsx wyznaczyć przebiegi czasowe sygnału na wejściu i wyjściu dzielnika napięciowego dla wartości elementów z Zad. 1.1 i częstotliwości 10 kHz. Wykres zamieścić w protokole.

Zadanie 2. Weryfikacja charakterystyki amplitudowej dzielnika napięciowego.

- **Zad. 2.1.** Połączyć układ pomiarowy zgodnie z Rys. 8.11, korzystając z modułu pomiarowego **X01**. Jako rezystor R_1 wykorzystać opornik dekadowy. Przyjąć wartości elementów jak w **Zad. 1.1** (bez kompensacji). W generatorze ustawić przebieg sinusoidalny o wartości międzyszczytowej U_{pp} = 2 V i zerowej składowej stałej.
- Dla dwóch częstotliwości: 100 Hz i 50 kHz wyznaczyć moduł transmitancji dzielnika napięciowego trzema metodami:
 - a) korzystając ze wzoru (8-5),
 - b) za pomocą arkusza kalkulacyjnego Dzielnik.xlsx,
 - c) mierząc w sposób automatyczny za pomocą oscyloskopu wartości międzyszczytowe napięcia na wejściu i wyjściu dzielnika:

 $(Menu) \rightarrow Measure \rightarrow Add \rightarrow Category: Vertical: V_{pp}$

Zamieścić w protokole opis procesu pomiarowego dla każdej z metod, charakterystykę amplitudową z arkusza kalkulacyjnego oraz oscylogramy.

- Zestawić w tabeli wszystkie wartości zmierzone i obliczone.
- Skomentować otrzymane różnice wyników oraz wpływ częstotliwości na wartość modułu transmitancji.
- Zad. 2.2. Skorygować wartość opornika dekadowego tak, aby dzielnik był skompensowany (ustawić wartość rezystancji *R*₁ obliczoną w Zad. 1.1). Opisać wpływ zmiany częstotliwości sygnału na wartości napięć mierzonych przy użyciu oscyloskopu dla dzielnika skompensowanego. Przykładowe oscylogramy zamieścić w protokole.

Czy zmiana częstotliwości powoduje zmianę stosunku napięć mierzonych przy użyciu oscyloskopu? Skomentować uzyskane wyniki.

Zadanie 3. Obserwacja przebiegu sygnału na wyjściu dzielnika napięciowego.

- **Zad. 3.1.** Połączyć układ pomiarowy zgodnie z Rys. 8.11, korzystając z modułu pomiarowego **X01**. Jako rezystor R_1 wykorzystać opornik dekadowy. Przyjąć wartości elementów jak w **Zad. 1.1** i **2.1** (bez kompensacji). W generatorze ustawić przebieg prostokątny o wartości międzyszczytowej $U_{pp} = 2$ V i częstotliwości 5 kHz. Przebiegi na wejściu i wyjściu dzielnika napięciowego obserwować za pomocą oscyloskopu w trybie pracy dwukanałowej.
- Zmierzyć za pomocą kursorów wartość międzyszczytową napięcia na wyjściu dzielnika z pominięciem stanów przejściowych. Ustawienia kursorów:

 $(Menu) \rightarrow Cursor \rightarrow Mode: Manual \rightarrow Select: Y-Y$ $(Menu) \rightarrow Cursor \rightarrow Source \rightarrow Source A: CH2$ $(Menu) \rightarrow Cursor \rightarrow Source \rightarrow Source B: CH2$

Oscylogram zamieścić w protokole.

- Porównać wartość tego napięcia z wartością $a \cdot U_{pp}$ i skomentować wynik porównania.
- Zad. 3.2. Z dzielnika napięciowego usunąć kondensator C1 (dzielnik będzie składał się z elementów R1, R2, C2). Czy przebieg napięcia na wyjściu dzielnika będzie funkcją ciągłą?
 W protokole zamieścić oscylogram oraz uzasadnienie kształtu przebiegu.
- Zad. 3.3. Z dzielnika napięciowego usunąć kondensator C₂ (dzielnik będzie składał się z elementów R₁, R₂, C₁). Czy przebieg napięcia na wyjściu dzielnika będzie funkcją ciągłą? W protokole zamieścić oscylogram oraz uzasadnienie kształtu przebiegu.
- **Zad. 3.4.** Do dzielnika ponownie dołączyć oba kondensatory. Dla różnych wartości rezystancji *R*₁:

$$\frac{R_2C_2}{5C_1}$$
, $\frac{R_2C_2}{C_1}$ oraz $\frac{5R_2C_2}{C_1}$

zaobserwować przebiegi czasowe na wejściu i wyjściu dzielnika napięciowego. Ustawić jednakowy poziom odniesienia i wartości stałej C_y oscyloskopu w obu kanałach. Oscylogramy zamieścić w protokole.

- Dlaczego rezystancja R1 wpływa na kształt sygnału wyjściowego?
- Jak zmienia się wartość międzyszczytowa sygnału wyjściowego z pominięciem stanów przejściowych przy wzroście rezystancji R₁? Dlaczego tak się dzieje?

Zadanie 4. Badanie właściwości sondy oscyloskopowej.

- **Zad. 4.1.** Połączyć układ pomiarowy zgodnie z Rys. 8.12. W oscyloskopie ustawić właściwą dla sondy wartość tłumienia: → *CH1* → *Attenuation: 10X*. Wykorzystując kalibrator sondy w oscyloskopie, sprawdzić, czy sonda jest skompensowana. Przebieg na ekranie oscyloskopiu porównać z przebiegami z **Zad. 3.4**. Oscylogram zamieścić w protokole.
 - W jaki sposób na podstawie kształtu przebiegu na oscyloskopie można wyciągnąć wnioski na temat skompensowania sondy?
- Zad. 4.2. Skompensowaną sondę dołączyć do oscyloskopu za pomocą dodatkowego przewodu – przedłużacza. Zaobserwować zmiany kształtu sygnału i wytłumaczyć ich przyczynę. Oscylogram zamieścić w protokole.
 - Jak dodatkowy przewód wpływa na wartości poszczególnych elementów: R₁, C₁, C_p, C_{we}, R_{we} dzielnika napięciowego, jakim jest tor wejściowy oscyloskopu z dołączoną sondą oscyloskopową (Rys. 8.13), oraz na stałe czasowe: τ₁, τ₂?
 - Co trzeba zrobić, aby ponownie skompensować sondę wartość kondensatora w sondzie oscyloskopowej należy zmniejszyć czy zwiększyć? Odpowiedź uzasadnić.

Rys. 8.11. Schemat układu pomiarowego do zadań: 2 i 3

Rys. 8.12. Schemat układu pomiarowego do zadania 4

Rys. 8.13. Tor wejściowy oscyloskopu z dołączoną sondą oscyloskopową

Pytania kontrolne

- 1. Narysuj schemat ideowy dzielnika napięciowego omawianego w ćwiczeniu. Podaj warunek skompensowania dzielnika.
- 2. Co oznacza, że dzielnik napięciowy jest skompensowany?
- 3. W dzielniku napięciowym usunięto kondensator *C*₁. Czy przebieg napięcia na wyjściu dzielnika napięciowego będzie funkcją ciągłą przy pobudzaniu dzielnika przebiegiem prostokątnym? Odpowiedź uzasadnij.
- 4. W dzielniku napięciowym usunięto kondensator *C*₂. Czy przebieg napięcia na wyjściu dzielnika napięciowego będzie funkcją ciągłą przy pobudzaniu dzielnika przebiegiem prostokątnym? Odpowiedź uzasadnij.
- 5. Dany jest dzielnik napięciowy składający się z elementów: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 4 \mu\text{F}$, $C_2 = 1 \mu\text{F}$. Czy ten dzielnik jest skompensowany? Jeśli nie, to zaproponuj zmianę wartości jednego z elementów, aby był skompensowany.
- 6. Dany jest dzielnik napięciowy składający się z elementów: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 4 \mu\text{F}$, $C_2 = 1 \mu\text{F}$. Jaka będzie wartość modułu transmitancji dzielnika dla bardzo małych częstotliwości?
- 7. Dany jest dzielnik napięciowy składający się z elementów: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 4 \mu\text{F}$, $C_2 = 1 \mu\text{F}$. Jaka będzie wartość modułu transmitancji dzielnika dla bardzo dużych częstotliwości?

- 8. Dane są dwa dzielniki napięciowe. Pierwszy: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 4 \mu\text{F}$, $C_2 = 1 \mu\text{F}$. Drugi: $R_1 = 10 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $C_1 = 0.4 \mu\text{F}$, $C_2 = 0.1 \mu\text{F}$. Czy charakterystyki amplitudowe $|\text{H}(j\omega)|$ obu dzielników będą identyczne? Odpowiedź uzasadnij.
- 9. W jakim celu stosujemy sondę oscyloskopową?
- 10. Jak zmienia się impedancja wejściowa oscyloskopu po zastosowaniu sondy?
- 11. Jak zmienia się rozdzielczość i czułość oscyloskopu po zastosowaniu sondy?
- 12. Jak zmienia się błąd metody pomiaru za pomocą oscyloskopu po zastosowaniu sondy?

Zadania domowe

Zadanie 1

Uzasadnij, że gdy $\omega \to 0$ to $H(j\omega) \to a$ oraz że gdy $\omega \to \infty$ to $H(j\omega) \to b$. Skorzystaj ze wzoru (8-3) w instrukcji do ćwiczenia, obliczając odpowiednie granice. Uzasadnij, że gdy $\tau_1 = \tau_2$ to transmitancja $H(j\omega)$ nie zależy od częstotliwości.

Korzystając z arkusza kalkulacyjnego sporządź wykres charakterystyki amplitudowej dzielnika (modułu transmitancji $|H(j\omega)|$) dla częstotliwości f z zakresu od 0 do 50 kHz oraz elementów dobranych na podstawie Tabeli 1.

Ostatnia cyfra numeru albumu	R1 [kΩ]	R₂[kΩ]	C₁[nF]	C₂[nF]
0 lub 6	1	1	10	4,7
1 lub 7	1	1	4,7	10
2 lub 8	2	1	10	4,7
3 lub 9	2	1	4,7	10
4	3	1	10	4,7
5	3	1	4,7	10

Tabela 1. Wartości elementów dzielnika napięciowego

Zadanie 2

Korzystając z oprogramowania **LTspice** firmy Analog Devices zasymuluj działanie dzielnika. Projekt dzielnika w **LTspice** (plik **Projekt_f.asc**) pobierz ze strony PELP (szczegóły w rozdziale 7 instrukcji do ćwiczenia). Wartości elementów przyjmij zgodnie z Tabelą 1. Wyznacz charakterystyki: amplitudową oraz fazową dzielnika. Skoryguj wartość opornika *R*₁ tak, aby dzielnik był skompensowany. Zanotuj skorygowaną wartość opornika *R*₁. Sprawdź za pomocą programu **LTspice** czy dzielnik jest skompensowany.

Korzystając z oprogramowania **LTspice** firmy Analog Devices zasymuluj działanie dzielnika. Projekt dzielnika w **LTspice** (plik **Projekt_t.asc**) pobierz ze strony PELP (szczegóły w rozdziale 7 instrukcji do ćwiczenia). Wartości elementów przyjmij zgodnie z Tabelą 1. Wyznacz przebieg sygnału na wyjściu dzielnika przy pobudzeniu sygnałem prostokątnym.